Opintojakso tarjoaa perustiedot sovelletun matematiikan opiskelijalle integroinnista, differentiaaliyhtälöistä ja sarjoista.
Opintojakson suoritettuaan opiskelija
- osaa integroitaessa yksinkertaisissa tapauksissa käyttää osittaisintegrointia, sijoituksia ja laskea rationaalifunktioiden integraalifunktioita sekä tutkia epäoleellisen integraalin suppenemista.
- osaa ratkaista 1. kertaluvun separoituvia ja lineaarisia differentiaaliyhtälöitä, muodostaa 2. kertaluvun homogeenisen lineaarisen yhtälön lineaarisesti riippumattomista ratkaisuista yleisen ratkaisun, ratkaista vakiokertoimisen 2. kertaluvun homogeenisen yhtälön ja hakea määräämättömien kertoimien menetelmällä yksittäisratkaisun epähomogeeniselle yhtälölle.
- osaa tutkia lukujonon raja-arvon olemassaoloa, laskea geometrisen suppenevan sarjan summan, tutkia positiivitermisen sarjan suppenemista integraalitestillä, vertailuperiaatteella ja suhdetestillä, selvittää potenssisarjan suppenemisvälin, muodostaa funktion Taylorin polynomeja ja yksinkertaisissa tapauksissa Taylorin sarjan.
- osaa esittää ratkaisunsa sekä suullisesti että kirjallisesti.