Skip to main content

Jennika Karvinen

Project Manager

About me

I work as a coordinator in PROFI7-Sustainable Biomedical and Toxicological Research (SUSBIO)-project. It is one of the profiling areas at Tampere university that were granted by the Research Council of Finland in the PROFI 7 Call. The key idea of SUSBIO project is to build a research community across discipline boundaries focusing on the development of sustainable soft material platforms and advanced in vitro methods to understand human physiology and to emulate mechanisms of action and progression of complex diseases. The goal is to find new ways to model human body, so that animal testing could be reduced in the future. In addition, with the help of new biodegradable functional materials, it would also be possible to reduce the accumulation of microplastics in different living environments in the long term.

***

I am also a postdoctoral researcher in prof. Minna Kellomäki's Biomaterials and Tissue Engineering group. I am a materials chemist and biomaterials scientist (PhD) with a knowledge of the chemical modification of synthetic and polysaccharide-based polymers, as well as the fabrication and characterization of hydrazone crosslinked hydrogels intended mainly for soft tissue engineering applications. Currently, I am working with self-healing hydrogels that can be used, for example, as injectable systems for delivery of cells (or drugs), or as bioinks for 3D-bioprinting.

Responsibilities

  • Project coordination (SUSBIO)
  • Scientific research
  • Student supervision (BSc)
  • Teaching (assisting)

Fields of expertise

Biomaterials (hydrogels)

Top achievements

Doctoral thesis

Karvinen, J. (2018). Hydrazone Crosslinked Polysaccharide-based Hydrogels for Soft Tissue Engineering. (Tampere University of Technology. Publication; Vol. 1578). Tampere University of Technology. http://urn.fi/URN:ISBN:978-952-15-4222-0 

MSc Thesis supervision

  • Kenna Brown (2020): Preparation and characterization of self-healing gelatin- and hyaluronan-based hydrogels with bioactive glass
  • Eetu Sorsa (2017): Hyaluronan Hydrogels Combined with Collagen I Aimed for Corneal Regeneration 
  • Essi Niemi (2016): Hydrogels for 3D Culture of Human Corneal Cells Aiming for Tissue Engineered Corneal Application
  • Henna Kiilholma (2014): Modification of polymers for poly(n-isopropyl acrylamide) -based hydrogels

BSc Thesis supervision (in Finnish)

  • Katariina Taipalus (2022): Itsekorjautuvien hydrogeelien toiminnalliset vaikutukset soluihin
  • Saana Mustakoski (2020): Itsekorjautuvat hydrogeelit lääkkeiden kuljetussovelluksissa 
  • Sara Inget (2020): Vaskularisointuneiden rakenteiden valmistaminen hydrogeeli-pohjaisilla menetelmillä in vitro 
  • Vilma Lampinen (2020): Hydrogeelien itsekorjautuvuuden karakterisointi 
  • Mimosa Peltokangas (2020): Itsekorjautuvat hydrogeelit ja niiden 3D-tulostus
  • Heidi Palola (2020): Itsekorjautuvat hydrogeelit neurosovelluksissa 
  • Petri Siivola (2019): Itsekorjautumis- ja muotomuistiominaisuuksien yhdistäminen hydrogeeleissä
  • Hamasa Faqhiri (2014): Hydrogels and their properties in eye tissue engineering
  • Aleksi Lehtoviita (2014): Hydrogeelit ja niiden ominaisuudet rusto- ja luukudosteknologiassa

Selected publications

Karvinen, J., & Kellomäki, M. (2024). 3D-bioprinting of self-healing hydrogels. European Polymer Journal, 209, 112864.

Karvinen, J., & Kellomäki, M. (2023). Design aspects and characterization of hydrogel-based bioinks for extrusion-based bioprinting. Bioprinting, 32, e00274.

Karvinen, J., & Kellomäki, M. (2022). Characterization of self-healing hydrogels for biomedical applications. European Polymer Journal, 181, 111641.

Koivisto, J. T., Gering, C., Karvinen, J., Maria Cherian, R., Belay, B., Hyttinen, J., ... & Parraga, J. (2019). Mechanically Biomimetic Gelatin-Gellan Gum Hydrogels for 3D Culture of Beating Human Cardiomyocytes. ACS applied materials & interfaces. 11, 23, 20589-20602. 

Ylä‐Outinen, L., Harju, V., Joki, T., Koivisto, J. T., Karvinen, J., Kellomäki, M., & Narkilahti, S. (2019). Screening of Hydrogels for Human Pluripotent Stem Cell–Derived Neural Cells: Hyaluronan‐Polyvinyl Alcohol‐Collagen‐Based Interpenetrating Polymer Network Provides an Improved Hydrogel Scaffold. Macromolecular bioscience, 1900096. 

Karvinen, J., Ihalainen, T. O., Calejo, M. T., Jönkkäri, I., & Kellomäki, M. (2019). Characterization of the microstructure of hydrazone crosslinked polysaccharide-based hydrogels through rheological and diffusion studies. Materials Science and Engineering: C, 94, 1056-1066. 

Karvinen, J., Joki, T., Ylä-Outinen, L., Koivisto, J. T., Narkilahti, S., & Kellomäki, M. (2018). Soft hydrazone crosslinked hyaluronan-and alginate-based hydrogels as 3D supportive matrices for human pluripotent stem cell-derived neuronal cells. Reactive and Functional Polymers, 124, 29-39. 

Koivusalo, L., Karvinen, J., Sorsa, E., Jönkkäri, I., Väliaho, J., Kallio, P., ... & Kellomäki, M. (2018). Hydrazone crosslinked hyaluronan-based hydrogels for therapeutic delivery of adipose stem cells to treat corneal defects. Materials Science and Engineering: C, 85, 68-78. 

Karvinen, J., Koivisto, J. T., Jönkkäri, I., & Kellomäki, M. (2017). The production of injectable hydrazone crosslinked gellan gum-hyaluronan-hydrogels with tunable mechanical and physical properties. Journal of the mechanical behavior of biomedical materials, 71, 383-391.