Hyppää pääsisältöön

Antti Aho: Kehittyneitä puolijohdelasereita silmäturvalliseen valotutkaan ja hankalien kelta–oranssien aallonpituuksien tuottamiseen

Tampereen yliopisto
SijaintiKorkeakoulunkatu 3, Tampere, Hervannan kampus, Sähkötalo, sali S2
Ajankohta4.12.2021 10.00–14.00
Kielienglanti, suomi
PääsymaksuMaksuton tapahtuma
Väittelijä tutkittavan laitteen vieressä.
Kirkkaille, aallonpituuslukituille puolijohdelasereille on kysyntää esimerkiksi itseajavien autojen LIDAR-valotutkissa ja lääketieteen sovelluksissa, joissa tarvitaan kelta–oranssia valoa. Valotutkien suorituskykyä voidaan parantaa siirtymällä käyttämään suuren silmäturvallisen tehon mahdollistavaa aallonpituusaluetta, ja puolijohdemateriaalien ominaisuuksien rajaamia kelta–oransseja aallonpituuksia on mahdollista tuottaa tehokkaasti taajuuskahdennuksen avulla. Diplomi-insinööri Antti Aho tutkii väitöskirjassaan näihin käyttötarkoituksiin sopivien laserdiodien valmistusta keskittyen komponenttien mittaamiseen.

Yksinkertainen puolijohdelaserdiodi, jollainen on tuttu esimerkiksi CD- ja DVD-soittimesta, on helppo ja halpa valmistaa. Sen heikkoutena kuitenkin on, että valon aallonpituus muuttuu voimakkaasti lämpötilan vaihdellessa, spektri on verrattain leveä ja säteen laatu huono tai teho pieni. Osa laserien sovelluksista vaatii täsmällistä toiminta-aallonpituutta, kapeaa spektriä, suurta tehoa ja hyvää säteenlaatua.

DI Antti Aho tutkii väitöskirjassaan, kuinka nämä ominaisuudet voidaan saavuttaa käyttäen saumattomasti laserdiodiin yhdistettyä pintahilaa ja levenevää aaltojohdeosiota. Tutkimusasetelma valittiin kahden potentiaalisen sovelluskohteen, LIDAR-valotutkan ja taajuuskahdennuksen, mukaan.

Monet nykyiset LIDAR-järjestelmät toimivat hieman näkyvää valoa pidemmällä aallonpituusalueella 900 nm ympäristössä. Tämän aallonpituusalueen etuna on komponenttien edullinen saatavuus, mutta haittapuolena on valotehon alhainen silmäturvallisuusraja. Käytettäessä aallonpituusaluetta 1500 nm voidaan käyttää suurempia tehoja ihmissilmän ominaisuuksista johtuen. Turvallisuusstandardin mukaan teho voi olla yli miljoonakertainen.

– Suurempi optinen teho parantaa valotutkan suorituskykyä. Kapea ja lukittu aallonpituus parantaa suorituskykyä edelleen, kun suurin osa auringon taustasäteilystä voidaan suodattaa pois ja parantaa näin signaali-kohinasuhdetta, Antti Aho kertoo.

Taajuuskahdennus vaatii kapeaa spektriä ja hyvää säteenlaatua

Laservaloa on vaikeaa tuottaa tietyillä aallonpituusalueilla puolijohteita käyttäen, mikä johtuu puolijohdemateriaalien rajoituksista. Yksi tällainen hankala aallonpituusalue on kelta–oranssi valo.

– Sovelluskohteita laservalolle löytyy esimerkiksi dermatologiassa, DNA-sekvensoinnissa ja spektroskopiassa, Aho esittelee.

Materiaalien rajoitteita voidaan kiertää käyttämällä taajuuskahdennusmenetelmää. Siinä epälineaarista materiaalia käyttäen voidaan tuottaa valoa, jonka aallonpituus on puolet alkuperäisen valon aallonpituudesta. Tällöin 1180 nm valosta, jota voidaan tuottaa tehokkaasti puolijohdelaserilla, saadaan keltaisen ja oranssin rajalla olevaa 590 nm valoa. Korkean hyötysuhteen taajuuskahdennus vaatii laserilta suurta tehoa, kapeaa ja vakaata spektriä sekä hyvää säteenlaatua.

Väitöskirjatutkimuksessa spektrin kaventamiseksi ja lukitsemiseksi käytetään laserdiodin kanssa samalle puolijohdesirulle yhdistettyä pintahilaa. Tapauksissa, joissa sovellus vaatii säteeltä hyvää laatua ja suurta tehoa, käytetään levenevää aaltojohdeosiota, joka on myös yhdistetty saumattomasti samalle sirulle.

Tutkimus on suoritettu osana tutkimusryhmää Optoelektroniikan tutkimuskeskuksella ORC:lla. Laserdioditutkimus vaatii monen alan erikoisosaamista ja työpanosta: sähköistä ja optista mallinnusta, materiaalien suunnittelua ja valmistusta, puolijohteiden prosessointia, komponenttien paketointia ja mittaamista.

– Oman työni pääpaino oli valmistettujen diodien mittaamisessa. Kehittyneiden lasersirujen mittaamiseen oli kehitettävä uudenlaisia mittausjärjestelmiä, jotka mahdollistavat esimerkiksi useiden sähköisten osioiden kytkennän samanaikaisesti, Aho kertoo.

Diplomi-insinööri Antti Ahon puolijohdetekniikan alaan kuuluva väitöskirja Monolithically Integrated Wavelength Locked and High-Brightness Laser Diodes tarkastetaan julkisesti Tampereen yliopiston tekniikan ja luonnontieteiden tiedekunnassa lauantaina 4.12.2021 klo 12 alkaen Sähkötalon salissa S2, Korkeakoulunkatu 3, Tampere. Vastaväittäjänä toimii professori Matthieu Roussey Itä-Suomen yliopistosta. Kustoksena toimii professori Mircea Guina tekniikan ja luonnontieteiden tiedekunnasta.

Väitöskirjaan voi tutustua osoitteessa http://urn.fi/URN:ISBN:978-952-03-2203-8.

Kuva: Heidi Tuorila.